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We study the Coulomb blockade of tunneling through a double quantum dot. The temperature dependence
of the linear conductance is strongly affected by the interdot tunneling. As the tunneling grows, a crossover
from temperature-independent peak conductance to a power-law suppression of conductance at low tempera-
tures is predicted. This suppression is a manifestation of the Anderson orthogonality catastrophe associated
with the charge redistribution between the dots, which accompanies the tunneling of an electron into a dot. We
find analytically the shapes of the Coulomb blockade peaks in conductance as a function of gate voltage.
@S0163-1829~96!04432-3#

I. INTRODUCTION

Electron tunneling in a mesoscopic structure may be sig-
nificantly affected by charging effects. The charging sup-
presses tunneling if the charge spreading is impeded by weak
links or by a special geometry of the structure. Such a sup-
pression of tunneling is commonly referred to as the Cou-
lomb blockade; for a review see Ref. 1. In recent
experiments2 it has become possible to observe the Coulomb
blockade in semiconductor heterostructures where the geom-
etry of the system can be easily modified by adjusting the
voltages on special gate electrodes.

A common example of the Coulomb blockade effect is a
measurement of linear conductance between two macro-
scopic leads weakly coupled to a quantum dot.2 When an
electron tunnels from a lead to the dot, the electrostatic en-
ergy of the system

U5
e2n2

2C
2kenVg ~1!

changes; hereC is the capacitance of the dot,en is its
charge,Vg is the gate voltage, andk5Cg /C is a dimension-
less geometrical factor that defines the gate capacitance
Cg . At low temperaturesT!e2/2C, the equilibrium discrete
charge of the system is determined by the minimum ofU.
Tunneling of an electron into or out of the dot leads to a
large increase of the energy and conduction through the dot
is suppressed. However, at certain values of the gate voltage
the electrostatic energy is degenerate,

U~n!5U~n11!, ~2!

and the Coulomb blockade is lifted. Therefore, the linear
conductance shows a series of peaks at the gate voltages
Vg*5(2n11)e/2Cg . The heights and shapes of the peaks
can be found3 using the master equation technique

G5
GlGr

2~Gl1Gr !

ke~Vg2Vg* !/T

sinh@ke~Vg2Vg* !/T#
. ~3!

HereGl ,r are the conductances of the weak links connecting
the dot to the leads.

In a number of recent experimental4–9 and theo-
retical5,10–14papers tunneling through two coupled quantum
dots was explored. In particular, by using a double-dot struc-
ture one can probe the quantum charge fluctuations more
directly than in a single dot.4,5,13 Here we focus on the ge-
ometry of Ref. 4, shown schematically in Fig. 1, in which the
dependence of the peak positions on the conductanceG0 of
the constriction between the two dots was studied. We dis-
cuss the theory of the peak positions in Sec. II. AsG0 grows
and approaches 2e2/h, the peaks become equidistant, and in
this respect the two-dot system behaves as a single dot of
a larger size. It is clear, however, that unlike a large single
dot, the charge spreading between the two coupled dots
is impeded and takes a relatively long time
t;C/G0;\(e2/C)21. The characteristic energy related to

FIG. 1. Schematic view of the double-quantum-dot system. The
dots are formed by applying a negative voltage to the gates
~shaded!; the solid line shows the boundary of the 2D electron gas
~2DEG!. Vl andVr create tunnel barriers between the dots and the
leads, whileV0 controls the transmission coefficient through the
constriction connecting the dots.
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this time delay\/t is of the order of the charging energy, and
one can expect it to affect the conductance through the
double-dot system and cause deviations from Eq.~3!. Indeed,
in Sec. III we show that the slow propagation of charge
between the dots results in a suppression of the conductance
peaks. The specific shape and temperature dependence of a
conductance peak provides one with information about quan-
tum fluctuations of charge between the two dots.

II. POSITIONS OF THE PEAKS
IN LINEAR CONDUCTANCE

To discuss the Coulomb blockade, one has to introduce
the electrostatic energy of the system shown in Fig. 1. In the
experiment4 the potentials of the dots were controlled by a
single gate voltageVg . Clearly, the equilibrium electrostatic
energy is a function of three variables: the discrete charges of
the two dotseN1 andeN2 and the gate voltageVg . It also
depends on the capacitances of the dots—to the gate, to the
external world, and to each other—which introduce five pa-
rameters into the problem. We will use the expression for the
electrostatic energy

U~N1 ,N2!5EC~N11N222X!2

1ẼC@N12N21l~N11N2!2aX#2, ~4!

whereX is a dimensionless variable proportional toVg . The
effective circuit we have in mind, the exact relation between
X andVg , and expressions for the parametersEC , ẼC , l,
anda in terms of the capacitances of the dots can be found
in Appendix A.

We intentionally grouped the terms in Eq.~4! in such a
way that the energy depends on the total number of particles
in the two dotsN11N2 and the relative chargeN12N2. In
this paper we assume that the coupling of the double-dot
system to the leads is extremely weakGl ,Gr!G0 and there-
fore one can neglect the quantum fluctuations ofN11N2. On
the other hand, the interdot conductanceG0 is not necessar-
ily small and atG0;e2/h the fluctuations ofN12N2 are
significant. The tunneling of the electron between the dots
lowers the ground-state energy of the system. Thus, to deter-
mine the positions of the peaks in the linear conductance one
should generalize Eq.~2! by replacing the electrostatic en-
ergyU with the ground-state energy of the double-dot sys-
tem EN(X) for a fixed total number of electrons
N5N11N2. That is, the peak positionsX* are given by

EN~X* !5EN11~X* !. ~5!

Early attempts at the calculation of the peak positions
were based on models allowing only a few discrete states in
each dot.11,12 Such an approach should provide an adequate
description of the system in the case of extremely small
quantum dots. In typical experiments,4–9 however, the num-
ber of states in each dot is large and a model with continuous
spectra of electrons is more appropriate. The calculation of
the ground-state energy for such a model in the limits of
weak and strong coupling between the dots can be found
using the techniques developed in Refs. 15 and 16.

In the weak-tunneling caseG0!e2/h, for a symmetric
systeml5a50, the peaks are centered at the following
values of the gate voltage:13,14

X6* 5n1
1

2
6
1

4 F12
ẼC

EC
S 12

2ln2

p2

hG0

e2 D G , ~6!

wheren is any integer. The peak splittingX12X2 grows
linearly with G0. In agreement with the experiment,4 for a
symmetric system, the peaks at small conductanceG0 are
doubly degenerate~assumingẼC5EC , which is a good ap-
proximation for the experiment4!.

Even a small asymmetrya!1 lifts this degeneracy. In-
deed, the positions of the peaks asG0→0 can be found from
~5! with the electrostatic energy~4! as the full energy. As a
result, we find the two sequences of peaks

X1*5
n11/2

11a/2
, X2*5

n11/2

12a/2
, ~7!

where againn is any integer. An asymmetry of the system
caused by a nonzerol in Eq. ~4! also leads to the lifting of
the degeneracy.

One can easily see that the peak positions given by Eq.~7!
show periodic beats: near certain values of the gate voltage
X the neighboring peaks come very close together—they are
separated by a distance of ordera—while between those
values ofX the peaks are separated bydX;1. The period of
these beats isa21. In the regions where the distance between
the neighboring peaks predicted by Eq.~7! is small, an ad-
ditional splitting due to the quantum charge fluctuations
caused by finite interdot conductanceG0 should be taken
into account. This additional peak splitting can be found in
the same way as the splitting~6! in the symmetric case. For
the caseẼC5EC , the result isdX5(ln2/p2)hG0 /e

2.
In the opposite case of strong coupling the properties of

the system depend on the particular model of the junction
between the dots. For an electrostatically created constriction
between the dots, a one-dimensional~1D! model of the junc-
tion is the most appropriate.17 In this case the conductance
G0 never exceeds 2e

2/h, and the strong-tunneling case cor-
responds to a small reflection coefficient
R512hG0/2e

2!1. We will concentrate on the asymmetric
casea.0, assuming for simplicityl50, and derive the
peak positionsX* from Eq. ~5!. At fixed N5N11N2 the
electrostatic energy~4! can be rewritten as

UN~N1!5EC~N22X!214ẼC~N12g!2, ~8!

whereg5(N1aX)/2. The second term on the right-hand
side is expressed in terms of the number of particles in the
left dot. In the strong-tunneling caseN1 is no longer quan-
tized, and atR→1 its average assumes the value^N1&5g,
thus minimizing the electrostatic energy. In this limit one
easily findsEN(X)5EC(N22X)2 and the peaks are equidis-
tantX*5(2n11)/4.

At nonzeroR the average number of particles in the left
dot ^N1& is not precisely equal tog, but oscillates nearg
with periodDg51. The corresponding small periodic con-
tribution to the ground-state energy was found in Ref. 16,
where a single quantum dot connected to a large lead was
considered. At temperatures exceeding the level spacings in
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both dots the two problems are equivalent and one can use
the result16 for the periodic correction to the ground-state
energy

EN~X!5EC~N22X!2

2
16eC

p3 RẼClnF 1

Rcos2f~g!Gcos2f~g!, ~9!

whereC50.5772 . . . is Euler’s constant andf(g) is de-
fined asf(g)5f01pg. In contrast to Ref. 16, we include
here a shiftf0 in the phasef(g) of the Coulomb blockade
oscillations. Such a phase shift is always present, for in-
stance, due to an asymmetry of the scattering potential in the
constriction connecting the dots. In the case of a single dot
connected to a large lead16 the presence off0 is irrelevant,
as it can always be compensated by an appropriate shift of
the gate voltage. Similarly, in the case of a double-dot sys-
tem the phasef0 can be incorporated in the definition ofX
as some shift@see the definition ofg in Eq. ~8!#, unless the
system is completely symmetrica50.

One can now use the expression for the ground-state en-
ergy ~9! to find the corrections to the equidistant peak posi-
tions caused by the weak scattering in the constriction. From
Eq. ~5! we find

X*5
2n11

4
1~21!n

4eC

p3

ẼC

EC
Rln

1

Rcos~2f01paX!.

~10!

This result for the peak positions in the strong-tunneling re-
gimeR!1 is a generalization of the results in Refs. 13 and
14 to the case of an asymmetric system. The asymmetry
gives rise to the cosine factor in Eq.~10!. Similarly to the
regime of weak tunneling, in the asymmetric case the dis-
tance between the peaks shows beats, with the period inX
beinga21.

As we mentioned, the presence of even a weak asymme-
try of the system destroys the periodicity of the peak posi-
tions and thus complicates the comparison of the experimen-
tally observed peak splitting with the theory.13,14One should
note, however, that in both weak- and strong-tunneling cases,
in the regions of the gate voltageX where the peak splitting
assumes the smallest possible values, the distance between
the neighboring peaks coincides with that predicted by the
theory13,14 for the symmetric case.

In the next section we calculate the heights and shapes of
the conductance peaks, whose positions are given by Eqs.
~6!, ~7!, and~10!, and compare the results with the available
experiments.

III. HEIGHTS AND SHAPES
OF THE CONDUCTANCE PEAKS

A. Weak tunneling between the dots

We start our discussion of the heights and shapes of the
conductance peaks with the case of weak tunneling between
the dots, which means that the conductance of the constric-
tion is smallG0!e2/h. Nevertheless, we assume that the
coupling to the leads is even weakerGl ,Gr!G0. The results
for the conductance depend on the symmetry of the system.
In the symmetric case, one can find the conductance within

the master-equation approach, identical to the one used in a
single-dot case.3 The resulting conductance has the form

G5
GlGr

Gl1Gr

1

21e2b~X2X2
* !1e2b~X1

* 2X!

3F b~X2X2* !

eb~X2X2
* !21

1
b~X1* 2X!

eb~X1
* 2X!21

G , ~11!

whereb54EC /T andX6* are the positions of the two adja-
cent peaks given by Eq.~6! with the samen. The two peaks
are resolved only at sufficiently low temperatures
T!EC(X1* 2X2* ), as shown explicitly in Fig. 2. The deriva-
tion of Eq. ~11! is outlined in Appendix B.

In a symmetric device each state with an odd chargeN is
doubly degenerate: the ‘‘odd’’ electron may be on either the
left or right dot. In addition, at special values of gate voltage
X5X6* , states with chargesN andN11 are degenerate. At
these values ofX, a charge can be transferred through the
double-dot system via a sequence of real states. As a result,
the peak conductance is temperature independent.

A small asymmetry changes the situation qualitatively. As
we saw in Sec. II, the presence of a nonzeroa or l in the
electrostatic energy~4! lifts the degeneracy; i.e., if the state
with the odd electron on the left dot is in resonance, the state
with it on the right dot is higher in energy by an amount
denotedD. If D is larger than the temperature, one can no
longer transfer charge through the double-dot system via real
states alone. Nevertheless, an electron can still escape from
the left dot to the right lead via a virtual state in the right dot:
such a mechanism of tunneling is known ascotunneling.1 At
temperatures exceeding the level spacing in the dot, inelastic
cotunneling dominates.18,19 In this case an electron tunnels
from the left dot to the right one, and thenanotherelectron
tunnels from the right dot to the right lead. After the process
is completed, the right dot is returned to the state with no

FIG. 2. Evolution of the split peaks with temperature described
by Eq.~11!. The reference point for the gate voltage is chosen to be
(X2* 1X1* )/2 and the gate voltage is plotted in units of
(X1* 2X2* )/2. The peak splitting is observable at a sufficiently low
temperatureb[ 4EC /T*2.
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extra charge, but an electron-hole pair is created in it. As a
result, the phase-space volume for such processes is propor-
tional to T2 and so the conductance of the system is sup-
pressed at low temperatures.

Let us find the height and shape of a conductance peak at
low temperaturesT!D for a typical peak. At the value of
the gate voltageX1*51/(21a) the energies of the states
with charge 0 and with extra chargee on the left dot are
equal, whereas the energy of the state with chargee on the
right dot isD54aEC /(21a). ~Here we assume that all the
asymmetry is due toa.0, andl50, ẼC5EC .) We first
calculate the rate of cotunneling of an electron from the left
dot to the right lead:

1

t
5
2p

\ (
k,p,q,s

U tpktsqD U2nk~12np!nq~12ns!

3d~ek2ep1eq2es1«!, ~12!

where tpktsq /D is the second-order matrix element for the
transfer of an electron from statek in the left dot to statep in
the right dot and then the transfer of another electron from
stateq in the right dot to states in the right lead;nk(p,q,s) and
ek(p,q,s) are the corresponding Fermi occupation numbers
and energies, respectively. We also defined

«5U~1,0!2U~0,0!52~22a!EC~X1*2X!. ~13!

A straightforward calculation now yields

1

t~«!
5

p\

3e4
G0Gr S TD D 2 «@11~«/2pT!2#

12e2«/T . ~14!

Here we used the definition of the conductance
G05(2pe2/\)(utpku2d(ek)d(ep) and a similar relation for
Gr .

One can now express the current through the system as

I5eF w1

t~«!
2

w0

t~2«!G , ~15!

wherew0 andw1 are the occupation probabilities of states
with the charge of the left dot 0 ande, respectively. Since the
escape rate to the right electrode is strongly suppressed and
much smaller than the rate of tunneling to the left lead, the
left dot is in equilibrium with the left lead and

w05
1

11e~«2eV!/T , w1512w0 . ~16!

HereV is the bias applied to the leads. An expansion of the
current~15! to linear order inV gives the conductance

G5
p\

6e2
G0Gr S TD D 2 ~«/T!@11~«/2pT!2#

sinh~«/T!
. ~17!

The dependence«(X) is given by Eq.~13!.
As expected, the height of the peak is suppressed at low

temperatures asT2. The result~17! can be applied to any of
the peaks~7! in the asymmetric system, provided that the
appropriate values ofD and « are found from the electro-
static energy~4!. The cotunneling peaks calculated for real-
istic parameters4 are presented in Fig. 3.

B. Perfect transmission between the dots

In Sec. III A we assumed that the coupling of the two dots
is weak. This enabled us to apply the standard master-
equation technique in the case of a symmetric system and to
account for the lowest-order cotunneling process in an asym-
metric double-dot device. In this section we consider the
limit of strong tunneling, where simple perturbation theory is
not applicable. We define the strong-tunneling limit as the
case of perfect transmission through the channel between the
dotsG052e2/h. To treat this limit, we apply a nonperturba-
tive approach based on the bosonized picture of the 1D trans-
port through the channel.20,16,21

We shall treat the double-dot system as a single conductor
of complicated shape. To find the conductance we will gen-
eralize the master-equation technique of Ref. 3 to account for
the impedance between the dots due to the narrow constric-
tion. We need to find the renormalization of the rates of
tunneling from the leads into the double-dot conductor. The
impedance of the charge redistribution within this conductor
suppresses the tunneling rates, not unlike the effect22 of the
‘‘electromagnetic environment’’ on transport through a
single tunnel junction.

To find the rate of tunneling through, e.g., the left tunnel
junction, we introduce a Hamiltonian that accounts for elec-
tron states in the left lead and left dot, as well as for the
electron states participating in the redistribution of the
charge between the dots. The separation of the latter group of
states from the two others is possible at time scales shorter
than the time of electron propagation from the tunnel junc-
tion to the other dot. In the case of a single-mode constric-
tion, this time is of the order of the inverse level spacing in
the dot. Therefore our theory is limited to temperatures ex-
ceeding the level spacing.

We assume that the constriction connecting the two dots
is a single-mode channel with no reflection. In this case the
set of electronic states responsible for the transport between
the dots is one dimensional and can be presented in a
bosonized form.20,16Thus the Hamiltonian can be written as
H5H01HC1Ht ,

FIG. 3. Conductance as a function of dimensionless gate voltage
X in the asymmetric weak-coupling case. Note the correlation be-
tween the modulation of the peak height and the separation of ad-
jacent peaks: when the peaks are high the splitting is small, while
when the peaks are small they are well separated. The parameters
used in Eq. ~17! to produce this plot area50.155 and
T/EC50.07.
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2mn0
1
mn0vF
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2 S ]us

]x D 2Gdx, ~18!

HC5EC~nL22X!214ẼCH n0@u↑~0!1u↓~0!#

2
11l

2
nL1

a

2
XJ 2, ~19!

Ht5(
k,p

~ tkpak
†apF1tkp* ap

†akF
†!. ~20!

First, inH0, since we are considering transport of an electron
from the left lead into the left-hand dot,ak is the annihilation
operator for electrons in the left lead andap is the operator
for electrons in the left dot;ek andep are the corresponding
energies. The bosonized 1D electron system is described by
the displacementsus(x) and momentum densitiesps(x) in
two spin channels, which satisfy the commutation relation
@us(x),ps8(y)#5 i\d(x2y)dss8; m and n0 are the mass
and density of 1D electrons. Second, inHC , the charging
energy~4! is written in terms of the operatornL of the num-
ber of electrons tunneled through the left barrier and the
chargeen0@u↑(0)1u↓(0)# transferred from the left dot to
the right one. Finally, in the tunnel Hamiltonian~20! the
matrix elementstkp describe tunneling through the barrier.
The transfer of each electron into the dot changesnL by one;
to account for this, we use the operatorF defined by the
commutation relation

@F,nL#5F. ~21!

The tunneling current through the junction is

I L[e^ṅL&52
ie

\
^@nL ,Ht#&5

2e

\
Im(

k,p
tkp* ^ap

†akF
†&,

~22!

where the average is performed with the density matrix of
the system described by the Hamiltonian~18!–~20!. Assum-
ing that the transmission coefficient of the tunnel barrier is
small, we will calculate the tunneling current in lowest-
~second-! order perturbation theory intkp . Thus we can ex-
pand the density matrix up to the first order intkp and find

I L52
2e

\
Re(

k,p
utkpu2E

2`

0

dt

3@^ap
†~0!ap~ t !&^ak~0!ak

†~ t !&^F†~0!F~ t !&

2^ak
†~ t !ak~0!&^ap~ t !ap

†~0!&^F~ t !F†~0!&#. ~23!

In thermodynamic equilibrium the two contributions inI L
compensate each other. To find the effective conductance
GL of the left junction, which is renormalized due to the
slow charge redistribution between the dots, we now shift the
chemical potential in the lead byeV and findGL5dIL /dV
in the form21

GL52
ip

\2GlT
2E

2`

` tK~ t !dt

sinh2@pT~ t2 id!/\#
. ~24!

Here Gl5(2pe2/\)(utkpu2d(ek)d(ep) is the unrenormal-
ized conductance of the left barrier and we have introduced
the correlator

K~ t !5^F~ t !F†~0!&. ~25!

In the derivation of Eq. ~24! we used the equality
^F(t)F†(0)&5^F†(t)F(0)&, which follows from the sym-
metry of the Hamiltonian~18!–~20! with respect to the trans-
formationnL→2nL , F→F†, us→2us , andX→2X.

In the absence of interactionEC5ẼC50, the operators
F and F† commute with the Hamiltonian, the correlator
K(t)51, and the conductance is not renormalized:
GL5Gl . We show below that the time dependence of the
correlatorK(t) is nontrivial if ẼC ,EC.0. Consequently, the
effective conductanceGL is renormalized and acquires a
power-law temperature dependence atT!ẼC .

To calculateK(t), we use a unitary transformationÛ that
shifts the origin of the electron liquid displacementus by a
distance that depends onnL ,

Û5expF i S a

2
X2

11l

2
nLDQG , ~26!

Q5
1

2\n0
E

2`

`

@p↑~y!1p↓~y!#dy. ~27!

Upon the transformation~26! the Hamiltonian is simplified
and the operatorF acquires a phase factor

Û†~H01HC!Û5H01EC~nL22X!2

14ẼCn0
2@u↑~0!1u↓~0!#2, ~28!

Û†FÛ5FexpS 2 i
11l

2
Q D . ~29!

The correlation function~25! now factorizes,K5KFKQ .
The factorKF5^F(t)F†(0)& is easily found

KF5^e2 iEC~2nL1124X!t/\&5
e2 i4EC~X*2X!t/\

e4EC~X*2X!/T11
. ~30!

In the derivation of Eq.~30! we assumed that the gate volt-
ageX is close to one of the peak positionsX*5(2n11)/4
@see Eq.~10!# and that the temperature is much smaller than
EC so that only two states are involved. The calculation of
KQ is also straightforward, as the Hamiltonian~28! is qua-
dratic in the bosonic variables, and the exponent in~29! is
linear in these variables:
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KQ~ t !5K expF2 i
11l

2
Q~ t !GexpF i 11l

2
Q~0!G L

5expH 2
~11l!2

4
^@Q~0!2Q~ t !#Q~0!&J

5H p2T

2ieCẼC

1

sinh@pT~ t2 id!/\# J ~11l!2/4

. ~31!

One can now substituteK5KFKQ into Eq. ~24! to find
the renormalized conductance

GL5
Gl

2 S p2T

eCẼC
D hL

FhLS 4EC~X2X* !

T D , ~32!

wherehL5(11l)2/4. The peak shape is given by the func-
tion Fh(x) defined as

Fh~x!5
1

cosh~x/2!

UGS 11
h

2
1

ix

2p D U2
G~21h!

. ~33!

The tunneling into the double-dot system is suppressed at
low temperaturesGL}T

hL. The origin of this suppression is
Anderson’s orthogonality catastrophe. The tunneling of an
electron into the left dot results in a significant change of the
ground state of the double-dot system, and the new ground
state is orthogonal to the old one. Indeed, after the tunneling
process has changed the charge of the left dot bye, charge
q↑5q↓5e(11l)/4 must be transferred to the right dot in
each spin channel to minimize the electrostatic energy. The
orthogonality of the two ground states results in a power-law
suppression of the tunneling density of statesG}ThL, where
the exponent can be related to the chargesqs as23

hL52(s(qs /e)
2, in agreement with Eq.~32!.

The tunneling through the right barrier can be treated in
the same manner and the result for the renormalized conduc-
tance GR can be found by replacingGl→Gr and
hL→hR5(12l)2/4 in Eq. ~32!. After the renormalized
conductancesGL andGR are found, we can use the master-
equation approach similar to the one outlined in Appendix B
and find the total conductance:

G5
GLGR

GL1GR
. ~34!

At T→0 the smaller of the two conductancesGL andGR
controlsG, which means that the peak value ofG is propor-
tional toTh, with h5(11ulu)2/4. Depending on the geom-
etry of the system, the parameterl may vary from21 to
1 and is 0 in the symmetric case. Therefore the exponent of
the temperature dependenceh varies from 1/4 in the sym-
metric case to 1 in the most asymmetric case.

C. Intermediate strength of tunneling between the dots

In Secs. III A and III B we considered the cases of weak
and strong tunneling between the dots. We found that for a
symmetric system, in the weak-tunneling limit the conduc-
tance peak heights are independent ofT, whereas in the

strong-tunneling limit they are suppressed asT1/4. For the
asymmetric case we discovered aT2 dependence of the peak
conductance for weak tunneling and aTh dependence for
strong tunneling with the geometry-dependent exponent1

4

<h<1. In this section we show that in the intermediate
regime the power-law temperature dependence of the peak
conductance persists and find the corresponding exponents.

To clarify the bounds on the intermediate regime, con-
sider the case of symmetric geometry. The weak-tunneling
result ~11! was obtained from a master equation with the
interdot tunneling rate calculated to first order inG0. It is
known,15 however, that higher-order terms give rise to a
logarithmic renormalization of the conductanceG0. This
renormalization becomes important at temperatures
T&TK.ẼCexp@2(p3e2/4\G0)

1/2#. Therefore atG0!e2/h
the result~11! is applicable only in the range of temperatures
TK!T!EC . On the other hand, a similar argument can be
applied in the vicinity of the strong-tunneling limit. Indeed, it
was shown16 that forG052(e2/h)(12R) a weak reflection
in the constriction is a relevant perturbation that becomes
strong atT&ECR. Thus theT1/4 dependence of the peak
conductance found in Sec. III B holds only in the temperature
rangeECR!T!EC .

To find the low-temperature (T!ECR) behavior ofG in
the presence of weak backscattering in the constriction
R!1, we complement the Hamiltonian~18!–~20! with a
scattering termH8. In bosonic representationH8 has the
form16

H852
D

p
AR(

s
cos@2pn0us~0!2f0#, ~35!

where the phase shiftf0 is added to account for the possi-
bility of an asymmetric location of the scatterer with respect
to the center of the constriction. One can then repeat most of
the discussion of Sec. III B with the new Hamiltonian. Upon
the unitary transformation~26! the backscattering term takes
the form

Û†H8Û52
D

p
AR(

s
cosF2pn0us~0!2fX1

p

2
~11l!nLG

52
2D

p
ARcosH pn0@u↑~0!1u↓~0!#2fX

1
p

2
~11l!nLJ cos$pn0@u↑~0!2u↓~0!#%, ~36!

wherefX5f01(p/2)aX.
Unlike other terms~28! of the Hamiltonian, the back-

scattering term~36! shows nontrivial dependence not only on
the sum of the displacementsu↑1u↓ , but also on their dif-
ferenceu↑2u↓ . At low temperaturesT!ẼC , one is only
interested in the low-energy behavior of the system. In this
regime the fluctuations of the charge of the dot
n0@u↑(0)1u↓(0)# are frozen due to the charging energy
term in Eq. ~28! and can be integrated out. The resulting
backscattering term has the form

Û†H8Û.2A8eCECDR
p3 cosFfX2

p

2
~11l!nLG

3cos$pn0@u↑~0!2u↓~0!#%; ~37!
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cf. Ref. 16. Since the operatorsF andF† do not commute
with the backscattering term~37!, the latter can affect the
KF component of the correlatorK(t) and the conductance of
the left barrier~24!.

To find the effect of the backscattering onKF(t), we first
discuss the influence of the operator~37! on the dynamics of
the spin fieldu↑2u↓ . One can easily show that the operator
~37! is a relevant perturbation,21 i.e., the amplitude of the
cosine term grows at low energies. Thus, atT→0 the spin
field fluctuations are frozen at the value
n0@u↑(0)2u↓(0)#50 or 1 for the positive and negative val-
ues of cos@fX2(p/2)(11l)nL#, respectively.

When an electron tunnels into the double-dot system
through the left barrier, the value ofnL changes from 0 to 1.
Thus the prefactor in Eq.~37! is proportional to either
cosfX or cos@fX2(p/2)(11l)nL#. If the two cosines have
the same sign, the increase ofnL described by the operator
F† does not affect the long-time dynamics of the spin mode,
which remains pinned at the origin with the same value of
u↑(0)2u↓(0). In this case the time dependence ofKF(t) is
not affected by the backscattering and the conductanceGL is
still given by Eq.~32!, with a different prefactor, which we
do not calculate here. On the other hand, if the signs of
cosfX and cos@fX2(p/2)(11l)nL# are different, the change
of nL shifts the boundary condition for the spin mode from
n0@u↑(0)2u↓(0)#50 to 1. An abrupt change of the bound-
ary condition creates a disturbance in a 1D bosonic field that
decays slowly, giving rise to power-law time dependences of
electronic Green functions.24 Thus the correlatorKF(t) ac-
quires an additional time-dependent factor21,26 Ks(t)
}pT/ isinh@pT(t2id)/\#. According to Eq. ~24!, such a
modification ofK(t) not only changes the prefactor in Eq.
~32!, but also replaces the exponenthL by hL11. Thus,
depending on the values offX and l, the backscattering
either does not affect the temperature dependence of the
renormalized conductanceGL}T

(11l)2/4 or replaces it with a
stronger oneGL}T

11(11l)2/4.
The latter result can be easily interpreted in terms of the

orthogonality catastrophe. Indeed, as we saw, the tunneling
of an electron into the left dot leads to the transfer of charge
q↑1q↓5e(11l)/2 through the constriction. On the other
hand, if n0@u↑(0)2u↓(0)# changes from 0 to 1, the trans-
ferred spin is (q↑2q↓)/2e5 1

2. Thus the charge transferred in
each of the spin channels is

q↑,↓5eS 6
1

2
1
11l

4 D . ~38!

The suppression of the tunneling density of states is de-
scribed by the power lawn}ehL, where the exponent is23

hL52(s(qs /e)
2. From Eq.~38! we now find

hL511
~11l!2

4
, ~39!

which results in the power-law suppression of the conduc-
tanceGL}T

11(11l)2/4.
To find the temperature dependence of the peaks in the

conductance through the double-dot system, one has to find
not onlyGL but alsoGR . It is clear that when a tunneling
process through the whole double-dot system is completed,

exactly one electron is transferred through the constriction.
Thus we conclude that the total transfer of charge after one
electron has tunneled into the left dot and another one es-
caped from the right dot isDq5e. Since the charge trans-
ferred through the constriction at the first step was
e(11l)/2, the tunneling of an electron from the right dot
must be accompanied by the transfer of chargee(12l)/2.
We saw above that unlike charge, the spin is transferred in
quantized portionsDs5 1

2. Since the total transferred spin is
1
2 , we conclude that exactly one of the two tunneling events
involved the transfer of spin. Therefore, in the cases when
the temperature dependence ofGL is given byT

(11l)2/4 and
T11(11l)2/4, the conductanceGR behaves asT

11(12l)2/4 and
T(12l)2/4, respectively. Finally, since the total conductance
~34! is given by the smaller ofGL andGR asT→0, we find

G}H T11
~12l!2

4 if cosfXcosFfX2
p

2
~11l!nLG.0

T11
~11l!2

4 if cosfXcosFfX2
p

2
~11l!nLG,0.

~40!

To determine which option applies to a particular peak, one
needs a detailed knowledge of the microscopic structure of
the double-dot system. It is clear, however, that for nearly
symmetric geometries the parameterl, which is determined
only by the electrostatics of the system, should be small:
l!1. In this case we predict the temperature dependence
G}T5/4 for all peaks, independent of the microscopic struc-
ture of the double dot.

The temperature dependence of peak heights has been in-
vestigated experimentally by van der Vaart.27 In the regime
of weak reflection, the data do follow a power law in the
temperature interval 100 mK,T,1 K. The exponent ob-
tained from a fit ish50.8–1.2, slightly less than our result
h51.25 for the symmetric geometry.

The result~40! shows that the presence of even weak
backscattering in the constriction gives rise to a large correc-
tion Dh;1 to the exponent in the power-law temperature
dependenceG}Th of the peak conductance. In the deriva-
tion of Eq. ~40! we assumed that the backscattering is weak
R!1. As the backscattering grows, it further affects the
temperature dependence. Indeed, so far we assumed that the
presence of the backscattering only creates a boundary con-
dition for the spin modeu↑2u↓ and does not affect the
charge modeu↑1u↓ . However, from the studies15,16 of a
single dot connected to a large lead it is known that the
backscattering does affect the charge transferred through the
constriction. One can attempt to generalize the result~40! to
the case of arbitraryR by introducing the valueQt of the
charge transferred through the constriction after an electron
tunnels into the left dot. It is clear from the derivation of Eq.
~39! that the second term there is actuallyQt /e, i.e.,

hL511SQt

e D 2. ~41!

At R→0 the correction to the electrostatic value
Qt5e(11l)/2 of the transferred charge is small16

DQt;Rln1/R, which justifies the approximation~39!.
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It is interesting to apply Eq.~41! to the weak-tunneling
limit R→1, considered in Sec. III A. In the asymmetric case
we demonstrated that the temperature dependence of the con-
ductance is given by Eq.~17!. In the derivation we assumed
that because of the high barrier separating the dots, there is
no transfer of electrons between the dots after an electron
tunnels into the left dot. This means that bothQt and Ds
vanish,hL50, and the conductanceGL is not suppressed at
T→0. On the other hand, when an electron escapes to the
right lead, it must go through the constriction, leading to
Qt5e andDs5 1

2. As a result, the relation forhR similar to
Eq. ~41! will give hR52, which leads to the quadratic tem-
perature dependence~17! of the linear conductance.

In our approach the shape of the peak is obtained from
Eq. ~24! by substitutionK(t)}$pT/ isinh@pT(t2id)/\#%h. As
a result, the shape of the peak is always uniquely related to
its temperature dependence

G}ThFhS «

TD , ~42!

whereFh is defined by Eq.~33! and« is proportional to the
deviation of the gate voltage from the peak center. One can
easily check that the peak shape~17! in the weak-tunneling
limit does coincide withF2(«/T).

IV. CONCLUSION

In this paper we studied electron tunneling through a sys-
tem of two quantum dots connected by a constriction. Tun-
ing the conductanceG0 of this constriction, one may control
the quantum charge fluctuations between the dots and thus
affect the Coulomb blockade phenomenon that develops at a
sufficiently low temperatureT&EC . The positions of the
peaks in linear conductanceG(Vg) depend on the value of
G0 and in the limitG0→2e2/h the peaks become equidistant
~Sec. II!. A striking result, however, is that the height and
shape of the peaks also evolve significantly withG0 and
remain nontrivial even in the limit of a reflectionless con-
striction G0→2e2/h. We have demonstrated that at any
G0, except a special case of smallG0 in a symmetric two-dot
system~Sec. III A!, the peak conductance is a power-law
function of temperatureT. The exponent of the power law
depends on the charge redistribution between the dots that
accompanies the electron transport through the two dots.
Both this exponent and the explicit peak shapes depend on
the dots’ geometry, as well asG0 ~Secs. III B and IIIC!. The
suppression of conductance at low temperature and bias can
be understood in quite general terms as an Anderson or-
thogonality catastrophe caused by the redistribution of
charge~see Secs. III B and IIIC! and the same exponents
should describe the bias dependence of the differential con-
ductance atT50.

In deriving our results, we assumed that the incoming
electron dwells in a dot for a long timetd@\/T before
reaching the constriction that connects the dots. In a generic
situation of a dot lacking a special symmetry, the electron
bounces off the walls many times before it gets to the con-
striction. The dwelling time is determined by the level spac-
ing td;\/dE. Therefore, the results we presented in Sec. III
are valid in the temperature intervaldE,T,EC . For typical

parameters, this allows one to vary the temperature by at
least one decade.

The effect of quantum charge fluctuations on the ground-
state energy has been recently demonstrated experi-
mentally.4,5 The data of Waughet al.4 is in a quantitative
agreement with the present theory.13 The temperature depen-
dence of the peak conductance, which is related to the dy-
namics of the charge redistribution, was studied in a very
recent experiment by van der Vaart.27 The temperature de-
pendence exponent found experimentally in the regime of
weak reflection,h50.8–1.2, is somewhat smaller than the
theoretical valueh51.25 we find for this case.
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APPENDIX A: DERIVATION
OF THE ELECTROSTATIC ENERGY EQ. „4…

In this section we find the electrostatic energy of the
double-dot structure in terms of the capacitances of the indi-
vidual dots and the gate voltage. To describe the electrostat-
ics of the physical structure shown schematically in Fig. 1,
we introduce the circuit diagram in Fig. 4. The electrostatics
is determined by the gate voltageVg and five capacitances:
C1 andC2 are the capacitances of the dots to the gate,C3 is
the capacitance between the dots, andC4 and C5 are the
capacitances of the dots to everything else.

In terms of the charge on each capacitor, the electrostatic
energy is

U5
q1
2

2C1
1

q2
2

2C2
1

q3
2

2C3
1

q4
2

2C4
1

q5
2

2C5
2q1Vg2q2Vg .

~A1!

The number of electrons on each dot is given by the sum of
the charges on the appropriate three capacitors

2eN15q11q31q4 , ~A2!

2eN25q22q31q5 . ~A3!

We now must minimize the energy Eq.~A1! at fixed values
of Vg , N1, andN2 and evaluate the energy at this minimum.

FIG. 4. Equivalent electrostatic circuit for the double-dot device
of Fig. 1 in equilibrium.
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The result has the form~4! ~up to an irrelevant constant!, and
we now give explicit expressions for the parameters in this
equation.

First, the energy involved in changing the total charge on
the double dot system is given simply by the total capaci-
tance of the double-dot to the external world. Introducing the
external capacitance

Cext[C11C21C41C5 , ~A4!

we find

EC5
e2

2Cext
. ~A5!

The coupling of the total charge to the gate is given by the
capacitance to the gate,

X5
2~C11C2!Vg

2 e
. ~A6!

Turning to asymmetric structures, we find that the fractional
asymmetry of the capacitances determines the parameterl,

l5~C21C52C12C4!/Cext. ~A7!

In terms of this asymmetry parameter, we find that the charg-
ing energy for transfer from one dot to the other is

ẼC5
e2

2@Cext~12l2!14C3#
~A8!

and that the coupling of this excitation to the gate is given by

a52S l1
C12C2

C11C2
D . ~A9!

This completely specifies the electrostatic problem.

APPENDIX B: MASTER-EQUATION TECHNIQUE
FOR THE CONDUCTANCE PEAKS

In this appendix we derive the expression~11! for the
conductance peaks in the symmetric case. We restrict our-
selves to the case of temperatures that are much smaller than
EC but can be of the order ofEC(X1* 2X2* ). For simplicity,
we assume that the gate voltageX is close to12, so that only
the pair of peaks centered atX1* andX2* given by Eq.~6!
with n50 should be considered. In this regime only the
states with charges 0,e, and 2e should be taken into account.
Clearly, one has four states, which can be denoted as 0,l ,
r , and 2, wherel and r describe the two states with charge
e on the left and the right dot, respectively.

We start with introducing the probabilities of occupation
of the four states, which satisfy the obvious condition
w01wl1wr1w251. The rate of transitions from state 0 to
statel , which are caused by tunneling of an electron through
the left barrier, is given by

1

t0→ l
5w0

2p

\ (
k,p

utpku2nk~12np!d~ek1eV1E02ep2E1!

5
Gl

e2
w0f ~E12E02eV!. ~B1!

Here tpk is the matrix element of tunneling from the statek
in the left lead to the statep in the left dot,nk(p) andek(p) are
the corresponding Fermi occupation numbers and energies,
E0(X) andE1(X) are the values of the ground-state energy
of the double-dot system with charge 0 and 1, and the func-
tion f (x) is defined as

f ~x!5
x

ex/T21
. ~B2!

In deriving Eq.~B1! we assumed the biasV applied to the
left lead. In a similar way one can find the rates of all other
transitions.

In a stationary state the time derivatives of the occupation
probabilities of all four charge states vanish. This yields
three independent equationsẇl5ẇr5ẇ250, which can be
written as

Gl@w0f ~«12eV!2wl f ~2«11eV!#1G0f ~0!@wr2wl #

1Gr@w2f ~2«2!2wl f ~«2!#50, ~B3!

Gr@w0f ~«1!2wr f ~2«1!#1G0f ~0!@wl2wr #

1Gl@w2f ~2«21eV!2wr f ~«22eV!#50, ~B4!

Gl@wr f ~«22eV!2w2f ~2«21eV!#

1Gr@wl f ~«2!2w2f ~2«2!#50. ~B5!

Here we have introduced

«1[E1~X!2E0~X!54EC~X2* 2X!,

«2[E2~X!2E1~X!54EC~X1* 2X!.

The currentI can also be expressed in terms of occupation
probabilities. In a stationary state, currents through all the
junctions are equal. Considering the current through the link
between the dots, we can expressI in the form

I5
G0

e
f ~0!~wl2wr !. ~B6!

Equations~B3!–~B5! must hold at any bias. Since we are
interested in linear regimeeV!T, we can differentiate Eqs.
~B3!–~B5! and replace them by the system of equations for
the derivativesw08 , wl8, wr8, and w28 of the occupation
probabilities over bias:

Rl Sw08

w0
2
wl8

wl
1
e

TD 1R0Swr8

wr
2
wl8

wl
D 1R2r Sw28

w2
2
wl8

wl
D 50,

~B7!

Rr Sw08

w0
2
wr8

wr
D 1R0Swl8

wl
2
wr8

wr
D 1R2l Sw28

w2
2
wr8

wr
2
e

TD 50,

~B8!

R2l Swr8

wr
2
w28

w2
1
e

TD 1R2r Swl8

wl
2
w28

w2
D 50; ~B9!

cf. Ref. 28. Herewi are the equilibrium occupation probabili-
ties and we introduced the equilibrium rates
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Rl5w0Gl f ~«1!5wlGl f ~2«1!5Gl f ~«1!Z
21, ~B10!

Rr5w0Gr f ~«1!5wrGr f ~2«1!5Gr f ~«1!Z
21,

~B11!

R05wrG0f ~0!5wlG0f ~0!5TG0e
2«1 /TZ21, ~B12!

R2l5wrGl f ~«2!5w2Gl f ~2«2!5Gl f ~«2!e
2«1 /TZ21,

~B13!

R2r5wlGr f ~«2!5w2Gr f ~2«2!5Gr f ~«2!e
2«1 /TZ21,

~B14!

with the equilibrium partition function
Z5112exp(2«1 /T)1exp@2(«11«2)/T#. Since the sum of

occupation probabilities always equals one, there are only
three independent variables in the system~B7!–~B9!.

Using Eq.~B6!, we can also express the conductance

G5R0Swl8

wl
2
wr8

wr
D ~B15!

in terms of the solution of the system~B7!–~B9!. In the limit
G0@Gl ,Gr , we find

G5
1

T S RlRr

Rl1Rr
1

R2lR2r

R2l1R2r
D . ~B16!

Substitution of the rates~B10!–~B14! into ~B16! yields the
formula ~11!.
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